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ABSTRACT
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Report Title

Synthesis of Robust Nanoporous All-Polymer Aerogels as Multifunctional Materials: Demonstrated extremely strong aerogels with 
polyureas, polyimides, polyamides (KevlarTM-like), polybenzoxazines, poly(acrylonitrile-co-diacrylate), as well as polynorbornene and 
polydicyclopentadiene. Found that: (a) Fibrous nanostructures are more resilient, rendering fibrous polymeric aerogels the most desirable for 
applications; and, (b) Both particulate and fibrous nanostructures consist of about the same-size primary and secondary particles. Hence, 
controlling formation of nano-fibers becomes a task of directing the assembly of secondary nanoparticles into strings. Collateral benefits 
include: (a) Regioselective cross-linking of silica with magnesium silicate ceramics; (b) Efficient synthesis for nanofibrous vanadia from 
vanadium oxytricholoride [VOCl3] cutting the cost of vanadia aerogels by a factor of 10 (cheaper than silica); (c) Polymer coated oxide 
nanoparticles synthesized via non-sol-gel methods, e.g., via a flame process; and, (d) Amine sensors based on silver nanoparticle-doped 
polyaniline.
Development and Self-Assembly of Multifunctional Inorganic-Polymer Hybrid Materials for Solar Energy Applications: Demonstrated 
convenient synthesis of various semiconducting nanoparticles, studied functionalized polyoxometalates (POMs), and developed novel 
conjugated systems with foldamers and dendrimers. Demonstrated that surface charged nanoparticles can self-assemble into 
thermodynamically stable single-shell hollow nanovesicles with applications as photocatalysts for solar water splitting and as traceable drug 
carriers. Synthesized the first hybrid rod-coil diblock copolymers with POM clusters covalently attached to the coil block, and demonstrated 
unique solution self-assembly behavior and photovoltaic properties. Synthesized new polycyclic aromatic compounds that can be solution 
processed into thin films with unusually high hole mobility. Such molecules coated on nanofibers consisting of electron acceptors behave as 
photoinduced electron donors yielding significantly enhanced photocurrent.  Designed new low band-gap donor-acceptor conjugated 
polymers demonstrating good solar cell performances.  Demonstrated that mechanical alloying can be used to prepare carbon nanodots, 
which can be used as interfacial layer in hybrid solar cells with dramatically improved short circuit currents.
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Executive Summary 
 

Missouri University of Science and Technology (Lead Organization) 
 

N. Leventis / C. Sotiriou-Leventis 

Synthesis of Robust Nanoporous All-Polymer Aerogels as Multifunctional Materials for 

Acoustic and Thermal Insulation and Energy Absorption Applications 

Since the exceptional mechanical properties of polymer-crosslinked (X-) aerogels are ultimately 

traced to the conformal polymer coating, our basic hypothesis became that if that polymer itself 

could be made with the same nanostructure and interparticle connectivity as in X-aerogels, it 

should have similar mechanical properties. That hypothesis was demonstrated with extremely 

strong aerogels from almost all major classes of polymers, including polyureas, polyimides, 

polyamides (Kevlar
TM

-like), polybenzoxazines, poly(acrylonitrile-co-diacrylate), as well as 

polynorbornene and polydicyclopentadiene made via Ring Opening Metathesis Polymerization 

(ROMP). Apart from that wide array of new strong lightweight materials, at the fundamental 

level, ARO W911NF-10-1-0476 made apparent that:  

(a) The nanostructure of polymeric aerogels may vary, seemingly arbitrarily, from 

nanoparticulate to nanofibrous, but consistently nanofibrous structures are more resilient. Thus, 

not only polymeric aerogels may be eventually the economically viable avenue to the general 

practical implementation of aerogels, but also fibrous polymeric aerogels emerge as the most 

desirable candidates; and, 

(b) Irrespective of a nanoparticulate vs. a nanofibrous morphology, both types of nanostructures 

consist of about the same-size primary and secondary particles. Hence, controlling formation of 

nano-fibers over nano-globules becomes a task of understanding, controlling and directing the 

assembly of secondary nanoparticles into strings. 

 

L. Dharani 

Processing and Mechanical Characterization of Polyurea Aerogels 

Polyurea (PUA) aerogels were proven to be mechanically strong, especially in terms of strength 

to weight. PUA aerogels can take extreme loads under compression; in the case of 0.31 g/cm
3
 was 

able to support forty thousand times its own weight before yielding and over three million times 

its weight at the highest strain values. Results also indicate that polyurea aerogels are not 

particularly sensitive to various mid-range frequencies. The change in storage modulus across the 

tested range was minimal. The 0.17 g/cm
3
 damped the oscillatory motion more effectively in 

tension than the other two densities. Compression simulations using PFC3D were completed 

using the PUA model. Simulations showed that the shear and normal stiffness of the particles 

were equivalent rather than a ratio as suggested by literature. From the available information 

PUA aerogels would be well suited to an application where low weigh, high stress, and high 

strain were necessary as long as loading only occurred once. Such applications could include 

impact-absorbing structures used in automobiles. If the manufacturing costs can be kept low, 

PUA aerogels could have a number of engineering applications. 

 

J. Winiarz 

Cost-Effective Synthesis of Vanadia Aerogels and Derivatives for Applications in 

Thermochromics, Energy Storage and Ballistics  

We have successfully fabricated vanadium oxide (VOx) aerogels using VOCl3 instead of 

VO(OPr)3, at a significantly reduced cost. Gels produced with this precursor have a nanoworm 

micromorphology identical to those fabricated using the alkoxide. Initial characterizations 

demonstrate that the wet gels are also much sturdier than alkoxide wet gels leading to improved 

processability. The gels can be crosslinked using Desmodur N-3200 bifunctional isocyanate to 
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produce mechanically strong X-aerogels. These gels can be used to form vanadium nitrite (VN) 

aerogels using aromatic isocyanate crosslinking and pyrolysis under NH3. We have also modified 

this method to produce high-quality VO2 films, which have potential application as a 

thermochromic coating for energy efficient windows. More recently vanadium oxide aerogels 

have been fabricated using V2O5 as a vanadium source, further lowering the cost. These gels were 

found to have particulate morphology and are also susceptible to isocyanate crosslinking. Finally, 

we have developed a facile hydrothermal method for synthesizing uniform LiαV6O13 and VO2(B) 

nanoparticles which have application as Li-ion battery cathode materials. 

 

Y. Xing 

Flame Synthesis of VOx and ZnO Nanoparticles 

The goal was to use a flame process to make metal oxide nanoparticles with unique morphology 

and to explore their conversion to hard nanoporous materials. Toward the goal we have 

accomplished synthesis of vanadium oxide nanoparticles and their conversion to nanoporous VC 

using a coating and pyrolysis process. We have also explored making ZnO nanorods in the flame 

reactor, which is a continuous process. 

 

University of Missouri – Kansas City (Co-Lead Organization) 
 

Z. Peng 

Development and Self-Assembly of Multifunctional Inorganic-Polymer Hybrid Materials for 

Solar Energy Applications 

The primary objectives of the original proposal are to develop various inorganic-polymer hybrid 

materials, study their self-assembly processes using innovative characterization techniques, and 

explore their potential applications as new multifunctional materials. During the three years under 

this grant support, we have made significant progress in a number of research fronts.  For the 

inorganic component, we have demonstrated the convenient synthesis of various semiconducting 

nanoparticles and continued studying functionalized polyoxometalates (POMs).  We have shown 

that surface charged nanoparticles in solutions can self-assemble into thermodynamically stable 

single-shell hollow nanovesicles.  Such nanovesicle structures may find important applications as 

photocatalysts for solar water splitting and as traceable drug carriers. We have synthesized the 

first hybrid rod-coil diblock copolymers with POM clusters covalently attached to the coil block.  

We have shown that such hybrid diblock copolymers exhibit unique solution self-assembly 

behavior.  We have demonstrated the photovoltaic properties of such POM-containing hybrids 

and identified areas for further improvement. We have synthesized new polycyclic aromatic 

compounds which can be solution processed into thin films which exhibit unusually high hole 

mobility. We have also shown that such molecules, when coated on the surface of nanofibers 

formed by electron acceptors, can behave as photoinduced electron donors and significantly 

enhance the photocurrent response of the nanofibers.  We have designed new low band-gap 

donor-acceptor conjugated polymers and demonstrated their good solar cell performances.  We 

have demonstrated that mechanical alloying can be used to prepare carbon nanodots which can be 

used as interfacial layer in hybrid solar cells with dramatically improved short circuit currents. 

We have also developed other conjugated systems including conjugated foldmers and dendrimers.  

 

Oklahoma State University (Sub-Contractor) 
 

F. Blum 

Development and Study of Amine Sensors Based on Metal Nanoparticle-Doped Polyaniline 

The major part of this work was in the development and understanding of sensors made in a one-

step green process.  We discovered that when aniline, water, a free radical oxidizer, and an acid 

dopant were irradiated with some form of moderate-energy radiation, polyaniline nanofibers 
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could be made.  The addition of metal ions resulted in nanometal particles embedded in the 

polyaniline fibers.  Using ultraviolet radiation and a drop of the precursor solution with metal 

particles on an interdigitated array allowed the easy production of sensors that were very sensitive 

to amines.  Silver-containing sensors were the most sensitive.  The response of the sensors to 

toluene and triethylamine were analyzed with a diffusion and surface adsorption model.  In 

another system, the behavior of the surfactant, cetyltrimethylammonium bromide (CTAB), 

adsorbed on silica was analyzed with FTIR and calorimetry.  The results were interpreted with a 

layered model.  The first layer of CTAB on silica was rather disordered, followed by a more 

ordered bilayer, followed by layers that approach bulk-like (well ordered) structures.  

 

Virginia Commonwealth University (Sub-Contractor) 
 

M. Bertino 

Regioselective Cross-Linking of Silica Aerogels with Magnesium Silicate Ceramics 
The VCU team developed a fabrication method, which allows one to mechanically reinforce 

aerogels without compromising their porosity since the core retains the characteristics of native 

aerogels [1]. The reinforcement is ceramic in nature (mainly magnesium silicate) and it is stable 

at temperatures comparable to the densification temperature of silica aerogels (~900 
o
C), which 

are much higher than the temperatures (~200 
o
C) accessible to polymer-reinforced aerogels. 

Cross-linking depends on the presence of carbon in the aerogel structure. We obtained cross-

linking only when carbonization conditions had been fulfilled, that is, PAN was used as a 

crosslinker, oxidized at 225 
o
C in air and then heated to the carbonization temperature of 850 

o
C. 

Masking allows one to reinforce only selected parts of aerogels and it could be employed to 

integrate aerogels into mechanical assemblies by reinforcing only the regions most subject to 

mechanical stress. Our results may also allow development of non-aerogel ceramic materials with 

anisotropic physical and chemical composition. In our process, chemical and physical properties 

are altered within the same monolith by introducing a catalyst (carbon in our case) for a solid-

state reaction using conventional lithographic methods. The flexibility of lithography allows in 

principle to generate complicated patterns, which are not accessible to conventional methods of 

fabrication of anisotropic ceramics such as layering, bonding and generation of temperature 

and/or chemical gradients during processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

Synthesis of Robust Nanoporous All-Polymer Aerogels as Multifunctional Materials 

for Acoustic and Thermal Insulation and Energy Absorption Applications 

 

Professors Nicholas Leventis and Chariklia Sotiriou-Leventis 

 

Department of Chemistry, MS&T 

 

1.  Introduction  

 Aerogels were invented in the 1930s in order to study the structure of wet-gels [1]. They are 

low-density, high porosity solids obtained by drying wet-gels under conditions that preserve their 

volume [2]. That usually involves converting and venting off the pore-filling solvent as a gas-like 

supercritical fluid (SCF). That process eliminates the surface tensions forces associated with 

evaporation that would cause collapse of the nanostructure. Quickly, aerogels became known as 

nanostructured solids with low-density (typically <0.2 g cm
-3

) and high porosity (>80% v/v).   

 Owing to those properties, aerogels have some very attractive attributes, such as low thermal 

conductivity, high acoustic attenuation, and their mesoporous space can become host of 

functional guests with useful chemical, electrical, magnetic or optical properties [3]. Almost 

immediately, those attributes shifted attention from the original fundamental intent of their 

invention to applications. Thus, aerogels have been overlooked as a research tool by the soft 

matter community.  

 The most common kind of aerogels is based on silica, whose fragility, however, has limited 

applications mainly to space exploration (e.g., NASA’s Stardust Program and Mars Rovers) [4]. 

By addressing the fragility issue, we have placed ourselves in a unique position to address the 

more general problem related to the fundamental composition of soft matter.  

 Specifically, the fragility of silica aerogels was rectified with polymer-crosslinked (X-) 

aerogels, whereas the surface functionality of pre-formed silica wet-gels plays the role of a 

chemical template that directs accumulation of a nano-thin conformal coating over the entire 

skeletal framework [5]. The polymer bridges covalently the skeletal nanoparticles and adds its 

chemical energy to the interparticle necks. For a nominal bulk-density increase by a factor of 2.5-

3.0 (X-aerogels are still very low-density materials), the mechanical strength increases by a factor 

of 300. Applications unrelated to aerogels before (e.g., in armor) have become possible [6]. With 

carbonizable crosslinking polymers (e.g., polyacrylonitrile) X-aerogels have become starting 

materials for the synthesis of new porous materials (e.g., SiC aerogels via carbothermal reduction 

of the silica-core by the carbon shell [7]). According to unsolicited opinions, X-aerogels comprise 

a paradigm in the design of multi-functional nanostructured matter [8]. 

 Along those efforts we reasoned that since the exceptional mechanical properties of X-

aerogels are ultimately traced to the conformal polymer coating, if that polymer itself could be 

made with the same nanostructure and interparticle connectivity as in X-aerogels, it should have 

similar mechanical properties. In other words, soft matter does not have to be weak. That 

hypothesis may be considered counterintuitive, because X-aerogels are expected to include 

synergistic effects reminiscent of polymer-matrix composites [9], which aren’t anticipated from 

pure polymers. Nevertheless, underlining the importance of the nanostructure, our hypothesis has 

been validated via this funding from ARO (W911NF-10-1-0476) with extremely strong aerogels 

from almost all major classes of polymers, including polyureas [10], polyimides [11], polyamides 

(Kevlar
TM

-like) [12], polybenzoxazines [13], poly(acrylonitrile-co-diacrylate) [14], as well as 

polynorbornene and polydicyclopentadiene made via Ring Opening Metathesis Polymerization 

(ROMP) [15].  
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2. Results from ARO W911NF-10-1-0476 
 

(a) Elucidation of the location of the polymer in X-aerogels 

More commonly, inorganic aerogels may consist of clusters of nanoparticles (e.g., silica, Fig. 1A), 

and only rarely of nano”worms” (e.g., vanadia, Fig. 1C). In the cross-linking (X-) process, the 

innate surface –OH groups of preformed oxide wet-gels become anchoring cites for the 

accumulation of a polymer coating, most commonly polyurea [5,6,16]. By introducing, other 

surface groups (-NH2, 

styrene, free radical 

initiators, norbor-nene) 

numerous other polymers 

have been also used 

successfully (e.g., epoxies 

[17], polystyrene [18], 

polymethylmethacrylate 

[18,19], polyacrylonitrile 

[7], polynorbornene [20]). 

In addition to X-silica (Fig. 

1B, [5-7,16-20]) and X-

vanadia (Fig. 1D, [21]), the 

cross-linking method has 

been demonstrated with 

~30 other oxide aerogels [22]. The polymer coating has been referred to as “conformal” meaning 

that it follows the contours of the inorganic backbone. However, the latter consists of a 

hierarchical network whereas primary nanoparticles form highly porous mass fractal assemblies 

referred to as secondary particles, which in turn form higher aggregates and so on. The exact 

location of the polymer in that nanostructure remained elusive, but was eventually resolved with 

ARO W911NF-10-1-0476. 

 

 

 As it turns out (2012, [20]) with a judicious choice of the crosslinking polymer 

(polynorbornene), and a battery of methods relating the porous structure (via N2-sorption and Hg-

intrusion porosimetry) with: (a) the polymer molecular structure and density (via GPC, solids 
13

C 

NMR and He pycnometry); (b) the fractal dimension of secondary particles (via SANS and  

SAXS); (c) the fractal dimension of particles forming the network (via rheology); and, (d) the 

bulk mechanical properties of the material, we concluded that polymer first coats primary 

particles, then fills 2
nd

-ary particles (Fig. 2), and most of the mechanical strength enhancement is 

obtained when the polymer starts spilling out into the fractal space of the next-level aggregates. 

Clearly, the role of the inorganic framework was just that of a templating agent for the polymer. 

 

(b) All-polymer aerogels with the nanostructure of X-aerogels. In addition to the conceptual 

challenge outlined in the Introduction, the practical advantage of all-polymer versus X-aerogels is 

their simplified one-step synthetic protocol for similar mechanical properties. For this, the three 

Fig. 1. SEM of: A. a native (non-crosslinked) silica aerogel (0.19 g 

cm
-3

; =89%); B. same aerogel crosslinked with polystyrene (0.48 

g cm
3
; =65%). C: Native vanadia aerogel (0.078 g cm

-3
; 

=97%). D: Vanadia aerogel crosslinked with polyurea (0.42 g cm
-

3
; =67%). (: porosity as % v/v of empty space.)  

Fig 2. Polynorbornene (PNB)-crosslinked silica 

 aerogels via ROMP. Yellow-filled circles: 
 Primary particles. Black dashed circles: 
 secondary particles. White dashed circle: 
 network-forming aggregates. (The greatly 
 improved mechanical properties are attributed 
 to polymers confined within secondary 
 particles, hence invisible by SEM [20].) 
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design rules articulated via ARO W911NF-10-1-0476 are [14]: (a) work under conditions that 

induce early phase separation of the developing polymer into the tiniest primary colloidal 

nanoparticles possible; (b) the most efficient way to do “(a)” is with small-molecule soluble 

multifunctional monomers that produce crosslinked, highly-insoluble polymers; and, (c) classic 

(industrial) methods for polymer synthesis, which frequently rely on oligomeric precursors, may 

not be the most suitable for aerogel synthesis. Rules (a) and (b) ensure that phase-separated 

nanoparticles have high surface functional group density to promote extensive interparticle 

crosslinking. That principle works well even with virtual primary particles (micelles: e.g., 

emulsion gelation of acrylonitrile in water [14]). Next, we review representative systems that 

have emerged via ARO W911NF-10-1-0476. 

 

b.1 Polyurea (PUA) aerogels.  Polyurea (PUA) aerogels were synthesized via Eq.s 1 and 2 from 

an aliphatic (Desmodur N3300A), or an aromatic (Desmodur RE) triisocyanate [10]. Both mono- 

mers have been courtesy of Bayer Corp. USA. They are supplied in bulk quantities, yet they are 

pure compounds (for full characterization see Ref [10a]). Eq.s 1 and 2 are rarely used for the 

synthesis of bulk polyureas; they are typically involved in the environmental curing of PUA films, 

or as a foaming mechanism for polyurethanes [23]. The main advantage of the Eq.s 1 & 2 route is 

that it bypasses polyamines [24,25], which can be expensive, and replaces them with water.  

 The bulk density of PUA aerogels has been varied over a wide range (0.016-0.6 g cm
-3

), and 

although the chemical composition 

remains the same, the nanostructure 

varies: at lower-densities is fibrous, 

turning particulate as the density 

increases. This is demonstrated in Fig. 

3 with a variable-density monolith. 

Small angle neutron scattering 

(SANS) has shown that both 

morphologies consist of almost 

identical spherical primary particles 

(RG~3-10 nm), which assemble into 

mass-fractal secondary particles that 

in turn form fibers or higher (mass or 

surface) fractal agglomerates [10a]. The specific energy absorption under quasi-static 

compression of ~0.6 g cm
-3

 samples was 90 J g
-1

 at 23 
o
C, and 55 J g

-1
 at -173 

o
C, reaching 

compressive strains of over 90%. Under tension, fibrous low-density samples (b and c, Fig. 4) can 

tolerate twice as much strain as their higher-density counterparts (a), so that as the density 

decreases, the total energy absorption remains about the same, or even improves (sample b). 

These results underline the practical utility of fibrous nanostructures. 

Fig. 3. Density-gradient PUA aerogel monoliths from 

Desmodur N3300A. Left: magnetic resonance imaging 
(MRI) of a H2O-filled sample; high-density end at the 
bottom. Middle: Density variation by MRI and by direct 
measurement. Right: SEM: high-density end, particulate 

(=54%) low-density end, fibrous (=94%). 

(1) 

(2)  

[Et3N: triethylamine (catalyst)] 
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 In the context of this proposal, we first reasoned that the effect of varying the monomer 

concentration (Fig. 3) operates through a change in the dielectric properties of the medium 

(solvent + monomer). Indeed, moving from acetone (polarity index, PI=5.08) to DMSO (PI=8.02), 

nanoparticles were favored at all densities (Fig. 5) [26]. In intermediate-polarity DMF (PI=6.70), 

we observed an intermediate morphology with short strings of nanoparticles (Fig. 5). Curiously, 

however, moving to even more polar CH3CN (PI=8.80), the nanostructure (Fig. 6) deviates 

significantly from all those in Fig. 5: we observe cocoon-like objects entrapped in fiber web, and 

the material is extremely flexible and superhydrophobic (water contact angle, =150.0
o
; dense 

PUA itself is hydrophilic with =69.1
o
) [26]. Inexpensive access to texture-induced 

superhydrophobicity is technologically important (self cleaning surfaces, environmental 

remediation etc.) [27].  

 

 

b.2 Polyurethane aerogels. Allegedly, polyurethane (PU) aerogels based on industrial oligomeric 

diisocyanates and diols with 1,4-diazabicyclo[2.2.2]octane (DABCO) as catalyst are known [28]. 

However, many of those materials may not have been polyurethanes at all, but rather 

poly(isocyanurates) resulting from trimerization of –N=C=O (DABCO is a well-known 

trimerization catalyst [29]) with some allophanate crosslinking: it is rather improbable for linear 

polyurethanes from highly soluble oligomers to form very strong gels. Indeed, the non-catalyzed 

reaction of Desmodur N3200 diisocyanate and diol end-capped poly(1,4-butylene adipate) 

(Mn~1,000, Aldrich) [5a], or PEO (600<Mn<3000) yields materials that collapse upon drying, 

even with SCF CO2, setting the stage against linear polymer gels. Considering all of the above, 

our recently (2013) reported studies of PU aerogels [30] used: (a) dibutyl tin dilaurate as a Lewis 

acid catalyst known to induce only polyurethane formation [31]; and, (b) readily available small 

Fig. 6. A flexible, monolithic, super-

hydrophobic PUA aerogel made with 
Desmodur N3300A in acetonitrile 
(ACN). (Note: the water droplet does 
not run off by turning the substrate 
upside-down: Petal effect super-
hydrophobicity. [26])  

Fig. 4. Tensile testing of PUA aerogels from 

Desmodur N3300A at 23 
o
C: (a) 0.31g cm

-3
 

(particulate); (b) 0.17 g cm
-3

 (fibrous); (c) 
0.12 g cm

-3
 (also fibrous). Inset: dog-bone 

sample used for testing. (Unpublished 
results in collaboration with co-PI 
Prpfessor Dharani – see below.) 

 

Fig. 5. SEM of PUA aerogels at similar bulk densities 

(b), prepared with Desmodur N3300A in 3 different 
solvents. Notice the change in morphology from 

fibrous to particulate. All scale bars at 1 m. (: 

porosity. : surface area via the BET method (N2 
sorption) [26]. 

b=0.13 g cm
-3

   b=0.11 g cm
-3

    b=0.13 g cm
-3

 

 = 90% v/v   = 91% v/v        = 89% v/v 

 = 169 m
2
 g

-1
   = 307 m

2
 g

-1
     = 280 m

2
 g

-1 
                       

acetone        DMF          DMSO 
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molecule multifunctional monomers. Our triisocyanates were Desmodur N3300A and Desmodur 

RE, and the small molecule aromatic alcohols included: 

 

 

 

 

 

 

 Satisfactory aerogels in terms of high porosities, surface areas and mechanical strength were 

obtained only with rigid Desmodur RE.  All gelations were run in acetone, with a few controls in 

THF and DMSO. Those materials could vary from extremely robust (compressive modulus~650 

MPa, specific energy absorption >100 J g
-1

) to rubber-like flexible foams (Fig. 7). Flexible PU 

aerogels consisted of larger particles. A very strong correlation was found between mechanical 

strength and n+r, (number of OH groups per polyol + OH groups per aromatic ring) in support of 

our hypothesis that the functional group density at the molecular level translates into a higher 

functional group density on nanoparticles, resulting to more efficient interparticle crosslinking 

(the latter was investigated and confirmed via a top-down characterization protocol from bulk 

modulus and solid thermal conduction data). Morphologically, the similarity between X-silica 

aerogels (Fig. 1B) and the rigid variety of the PU aerogels is striking.  

 

b.3 Polyimide aerogels. Polyimides are used in high-T applications and are synthesized 

commercially by two methods: (a) condensation (>190 
o
C) of aromatic dianhydrides and amines 

(the DuPont route, e.g., Kapton
TM

) [32], or (b) crosslinking (>300 
o
C) of norbornene end-capped 

imide oligomers (the PMR route; PMR: polymerization of monomer reactants) [33,34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Desmodur RE / SDP 
0.190 g cm-3 

 

Desmodur RE / POL 
0.760 g cm-3 

 

Fig. 7. Two types of polyurethane aerogels ranging from super-rigid (left) to flexible (right), both synthesized 
with Desmodur RE triisocyanate and two small-molecule aromatic alcohols (see above). 

Fig. 8. (A) PI-AMN  (b=0.186 g cm
-3

, =87% 

v/v, s=1.453 g cm
-3

,
 

BET surface 

area=431 m
2 

g
-1

). (B) PI-ISO  (b=0.090 g 

cm
-3

 =94% v/v, s=1.473 g cm
-3

, BET 
surface area=315 m

2 
g

-1
) [11a,11b].  

 

Scheme 1. Polyimide through the isocyanate 

(PI-ISO) and the amine (PI-AMN) routes 
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 Polyimide aerogels via the DuPont route were reported in a 2006 US patent [35]. We 

duplicated those results and in parallel we developed a room-temperature alternative method via 

the underutilized reaction of aromatic dianhydrides with multifunctional isocyanates [36]. 

Scheme 1 compares the two methods and emphasizes that both yield chemically identical 

products [11a,11b]. SANS has shown that materials synthesized in NMP via either route consist 

of similar size primary (1
o
) and secondary (2

o
) particles (radii or gyration, RG, for primary and 

secondary particles of polyimide aerogels from the isocyanate/amine route: 4.7/5.8 nm and 35/42 

nm, respectively). SEM, however, (Fig. 8) shows that 2
o
-particles assemble into fibers in the 

isocyanate route, and into globular aggregates in the amine route. The difference was attributed to 

the rigidity of the 7-membered ring intermediate in the isocyanate route (Scheme 1) [11a,11b].  

 More recent studies (2013) with pyromellitic dianhydride and Desmodur RE triisocyanate 

yielded strings of particles turning to clusters of particles at higher concentration sols [11c]. Most 

importantly, those materials include intrinsic microporosity, which was confirmed via simulations. 

Using the experimental XRD pattern, the particle size and the skeletal density of the polymer as 

gauges for the fidelity of the simulations, we found out that primary particles are not single 

polymer entities, but rather H-bonded or van der Waals assemblies of oligomers, stacked together, 

then packed together and eventually coiled up to maximize those non-covalent interactions 

between oligomers in different stacks. Fig. 9 uses two different polyimides to demonstrate the 

ability of that approach to reproduce both the XRD pattern and the micropore size by stacking 

and packing of second-generation dendritic oligomers [11c]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b.4 ROMP-derived aerogels. We entered this area by reasoning that ROPM should be a viable 

low-temperature alternative to the high-temperature PMR route to polymides. With ARO funding, 

that conjecture has been fully justified (see Fig. 10 [37]), and the expertise was applied to X-silica 

aerogels crosslinked with polynorbornene leading to mapping topologically the location of the 

polymer on the silica nanostructure (Fig. 2) [20]. About concurrently with our report on the 

ROMP alternative to PMR polyimides [37], Aspen Aerogels reported on polydicyclopentadiene 

(pDCPD) aerogels [38]. This area is picking momentum for strong lightweight materials [39], 

perhaps because of Grubbs’ intriguing photograph in his Nobel lecture showing 9 mm bullets  

Fig. 9. Left: best-match of simulated XRD patterns with the experimental data as indicated. (“Pack-x” 

refers to the number of hyperbranched polyimide oligomers introduced in the molecular dynamics 
simulations. Middle: structures corresponding to the simulated XRDs on the left. Right: magnification 
of the voids enclosed by dashed ovals in middle. 
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embedded in a dense pDCPD polymer block [40]. Our 

attempts to synthesize pDCPD aerogels by duplicating 

literature procedures yielded severely deformed monoliths.  

That issue was alleviated by free radical polymerization of 

methylmethacrylate (MMA) in the pores, engaging some of 

the double bonds of the ROMP-derived polymer, and yielding 

polyMMA (PMMA) grafted to the network. Those results 

were presented at the 242
nd

 ACS meeting in Denver, CO 

(August 2011) - the paper was selected for the Sci-Mix [15a]. 

Detailed structural analysis revealed that PMMA prevents 

deformation by filling and rigidizing secondary pDCPD 

nanoparticles in analogy to polynorbornene filling silica (refer 

to Fig. 2) [15b]. However, most importantly for this proposal, 

in analogy to PUA aerogels, the pDCPD network may consist 

of fibers (at lower densities) or particles (at higher ones), but 

both morphologies share the same hierarchical structure of 

primary/secondary particles (Fig. 11 - legend). 

 Other systems include polyamide (Kevlar
TM

-like) aerogels 

[12] from carboxylic acids and isocyanates [41], and “green” polyacrylonitrile aerogels via 

emulsion gelation in water [14]. The latter system tested the novel concept of creating and using 

micelles as virtual nanoparticles. Since polyacrylonitrile is the main industrial source of carbon 

(graphite) fiber, polyacrylonitrile aerogels were pyrolyzed at 2,300 oC and were converted to 

graphite, thus demonstrating the first graphitic aerogels. Those materials turn out to be monolithic, 

very robust and electrically conducting, as expected. Surprisingly, however, we also discovered 

that graphitic aerogels include rod-like microstructures, which are quite rare and have been 

observed in some natural graphite from only a couple of mines around the world. A representative 

example of those rod-like graphitic structures is shown in Fig. 12. Similar structures have been 

observed with other kinds of carbonizable aerogels (e.g., certain polyureas, polyimides, 

polyamides, polybenzoxazines) and a mechanism is being worked out. 

 

 

Fig. 11. pDCPD aerogels. Left: 

b = 0.084 g cm
-3

,  = 207 m
2
 

g
-1

. SAXS diameters: 1
o
 

particles = 12.8 nm; 2
o
 

particles = 148 nm. Right: b = 

0.55 g cm
-3

,  = 193 m
2
 g

-1
. 

SAXS diameters: 1
o
 particles = 

39.6 nm; 2
o
 particles = 123 

nm. (Unpublished results.)  

Fig. 10. (A) Synthesis of bis-NAD diimide monomer. (B) ROMP polymerization of bis-NAD. The polymer 
(bis-NAD-xx) composes the skeletal framework of the aerogels. (GC-II: second generation Grubgs’ 
catalyst. 

A. B. 
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3. Summary 
Apart from a wide array of new strong lightweight materials based on almost all polymeric 

classes and covered by numerous patent applications, at the fundamental level, ARO W911NF-

10-1-0476 made apparent that:  

(a) The nanostructure of polymeric aerogels may vary, seemingly arbitrarily, from 

nanoparticulate to nanofibrous, but consistently nanofibrous structures are more resilient. Thus, 

not only polymeric aerogels may be eventually the economically viable avenue to the general 

practical implementation of aerogels, but also fibrous polymeric aerogels emerge as the most 

desirable candidates; and, 

(b) Irrespective of a nanoparticulate vs. a nanofibrous morphology, both types of nanostructures 

consist of about the same-size primary and secondary particles. Hence, controlling formation of 

nano-fibers over nano-globules becomes a task of understanding, controlling and directing the 

assembly of secondary nanoparticles into strings. 
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Processing and Mechanical Characterization of Polyurea Aerogels 

Professor Lokeswarappa R. Dharani  

Department of Mechanical and Aerospace Engineering, MS&T 

 
The polymer aerogels were created by reacting triisocyanate Desmodur N3300a and water 

using triethylamine as a catalyst in a solution of acetone. The aerogels created using this reaction 

consist of polyurea and are referred to as polyurea aerogels (PUA). Though chemically identical, 

three examples of PUA have been created with varying densities. The three densities investigated 

were 0.12 g/cm
3
, 0.17 g/cm

3
, 0.33 g/cm

3
. These are the upper ends of the densities that are easily 

produced. The 0.12 g/cm
3
 and 0.17 g/cm

3
 recipes form a gel in one hour and then are aged in the 

molds for 24 hours. The amount of catalyst dictates the time it takes for a solid gel to form, the 

amount of catalyst in the 0.33 g/cm
3
 recipe has been decreased to increase the time to produce a 

gel. 

Testing was conducted with the knowledge that mechanical strength for tension, compression, 

and shear needed to be quantified. Finding the tensile and compressive properties was simple, 

finding the shear properties proved rather difficult. A three-point bend tests are common, samples 

are subjected to tension, compression, and shear forces. Extracting data for these properties is 

difficult for PUA due to its ductility and bi-modular behavior. Due to this, a new test was 

developed to determine the shear characteristics. The results from tensile, compressive and shear 

tests are summarized in Table 1. 

The second phase of mechanical characterization consisted of dynamic tension and bending 

testing using dynamic mechanical analysis (DMA) and numerical simulation to develop a better 

understanding of structure-property response. In most cases, the mechanical properties were 

minimally affected when tested over a range of frequencies. In tension the previously observed 

increase of stiffness with density was not present. In this case the 0.17 g/cm
3
 has the lowest 

storage modulus. Micro-scale effects such as particle stiffness, bond strength, and particle 

frictional coefficients were incorporated into the macro-scale structure-property relationship for 

the prediction of the Young’s modulus. Compression simulations were performed and compared 

to the corresponding experiment.  

Simulations were completed to determine the micro-properties such as bond strength and 

particle stiffness that cannot be calculated experimentally. These parameters were then used to 

calculate the Young’s modulus of another aerogel with a similar microstructure. This would allow 

an estimate of the Young’s modulus without laboratory testing. The diffusion limited cluster-

cluster aggregation (DLCA) algorithm provided a method for creating polyurea aerogels for 

simulation. Particle Flow Code 3D (PFC3D) was used to simulate the particle interaction as the 

micro-parameters were varied. 

Dynamic mechanical analysis (DMA) showed how the storage modulus (E’) changes over a 

range of frequencies. The phase angle provided information on the damping behavior of the three 

densities. The output of the DLCA code, a table consisting of particle radius and its location in 

3D space, was supplied to the PFC3D input file. The cube size was chosen based on the largest 

cell size possible while maintaining computational efficiency. Once the model is created in 

PFC3D it is calibrated by estimating initial values for the particle stiffness and bond strength then 

adjusting these values until the modulus in compression of the simulation matches the 

experimental value. 

In the DMA, frequency scans of polyurea aerogel showed that frequency has a minimal effect 

of the storage modulus in the frequency range tested. The tension test indicated that the 0.17 

g/cm
3
 more efficiently damped the oscillatory motion induced by the DMA than the other two 
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densities. Testing has concluded that polyurea aerogels are mechanically strong and insensitive to 

mid-range frequencies. PUA could prove to be a useful new material in a wide variety of 

engineering structures if processes could be developed to keep production costs to a minimum. 

 

Conclusions 

 The results for bending are for informational purposes only and should not be use for 

preliminary design calculations for strength or stiffness, although the information provided by the 

tension, compression, and shear tests can be used to calculate strength and stiffness in bending. 

The information in Table 1 can be used for preliminary design calculations of structures 

experiencing static loads. Structures subjected to dynamic loads or extreme environments would 

require additional testing. Fatigue and creep testing would need to be completed to determine the 

behavior of PUA under long-term conditions. Dynamic mechanical analysis can be used to 

determine strength and stiffness under varying strain rates and temperatures. 

  

 PUA has proven to be mechanically strong, especially in terms of strength to weight. PUA can 

take extreme loads under compression; in the case of 0.31 g/cm
3
 was able to support forty 

thousand times its own weight before yielding and over three million times its weight at the 

highest strain values. From the available information PUA would be well suited to an application 

where low weigh, high stress, and high strain were necessary as long as loading only occurred 

once. Such applications could include impact-absorbing structures used in automobiles. If the 

manufacturing costs can be kept low, PUA could have a number of engineering applications.  

Table 1. Compiled Results from Testing 

Tension 
PUA 

Density 

Young's Modulus 

(MPa) 

Yield Stress 

(MPa) 

Failure Stress 

(MPa) 

Failure Strain 

(%) 

 
0.12 g/cm

3
 24.1 ± 0.5 0.7 ± 0.03 1.1 ± 0.08 12.5 ± 2.3 

 
0.17 g/cm

3
 37.2 ± 1.3 1.0 ± 0.2 1.7 ± 0.1 13.5 ± 3.0 

 
0.33 g/cm

3
 102 ± 7.2 2.93 ± 0.4 3.9 ± 0.2 6.0 ± 0.6 

Compression 
PUA 

Density 

Young's Modulus 

(MPa) 

Yield Stress 

(MPa)   

 
0.12 g/cm

3
 11.7 ± 4.4 0.4 ± 0.01 

  

 
0.17 g/cm

3
 19.3 ± 4.2 0.7 ± 0.1 

  

 
0.31 g/cm

3
 69.0 ± 17.9 2.4 ± 0.3 

  

3 Point Bend 
PUA 

Density 

Young's Modulus 

(MPa) 

Yield Stress 

(MPa)   

 
0.12 g/cm

3
 33.1 ± 2.5 1.03 ± 0.1 

  

 
0.17 g/cm

3
 62.7 ± 6.4 1.9 ± 0.1 

  

 
0.31 g/cm

3
 137.9 ± 13.1 4.65 ± 0.4 

  

Shear 
PUA 

Density 
Shear Modulus (MPa) 

Yield Stress 

(MPa) 

Failure Stress 

(MPa)  

 
0.12 g/cm

3
 8.3 ± 0.6 0.2 ± 0.02 0.4 ± 0.03 

 

 
0.17 g/cm

3
 11.7 ± 0.7 0.4 ± 0.04 0.7 ± 0.08 

 

 
0.31 g/cm

3
 37.9 ± 2.5 1.2 ± 0.2 1.6 ± 0.3 
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The results indicate that polyurea aerogels are not particularly sensitive to various mid-range 

frequencies. The change in storage modulus across the tested range was minimal. The 0.17 g/cm
3
 

damped the oscillatory motion more effectively in tension than the other two densities. 

Compression simulations using PFC3D were completed using the PUA model. Simulations 

showed that the shear and normal stiffness of the particles were equivalent rather than a ratio as 

suggested by literature.  
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Cost-Effective Synthesis of Vanadia Aerogels and Derivatives for Applications in 

Thermochromics, Energy Storage and Ballistics  

 

Professor Jeffrey Winiarz 

 

Department of Chemistry, MS&T 
 

 

We have successfully fabricated vanadium oxide (VOx) aerogels using VOCl3 instead of 

VO(OPr)3. The primary motivation for this substitution resides in the relative cost. As such, we 

have reduced the cost associated with the synthesis of VOx aerogels by a factor of ~10. Gels 

produced with this precursor have a nanoworm micromorphology identical to those fabricated 

using the alkoxide method, as seen in Figure 1. Initial characterizations demonstrate that the wet 

gels are also much sturdier than alkoxide wet gels leading to improved processability. The native 

gels have a density of 103 mg/mL and are macroporous. Characteristic of aerogel materials, they 

also exhibit an extremely large BET surface area of 102 m
2
/g. The durability of the vanadium 

oxide aerogels can in part be attributed to the fact that shrinkage is negligible during aging and 

supercritical drying. The gels can be crosslinked using Desmodur N-3200 bifunctional isocyanate 

to produce mechanically strong X-aerogels (Figure 2). These gels can be used to form VN 

aerogels using aromatic isocyanate crosslinking and pyrolysis under NH3. We have also modified 

this method to produce high-quality VO2 films (Figure 3), which have potential application as a 

thermochromic coating for energy efficient windows. A provisional patent application for this 

method has been filed through the Missouri S&T Technology Transfer office. 

 

Additionally, vanadium oxide aerogels have been fabricated using V2O5 as a vanadium source, 

potentially lowering cost further. These gels were found to have particulate morphology and are 

also susceptible to isocyanate crosslinking. 

 

We have developed a facile hydrothermal method for synthesizing uniform LiαV6O13 (Figure 4) 

and VO2(B) nanoparticles which have application as Li-ion battery cathode materials. 

 

Current work on vanadia aerogels involves elucidation of the gelation mechanism via 
1
H, 

13
C, and 

51
V NMR. We are investigating the crystalline structural of the LiαV6O13 nanoparticles using the 

high-resolution x-ray and neutron diffraction facilities at Argonne National Laboratory and Oak 

Ridge National Laboratory, respectively. We are also developing alternative electrolyte solvents 

appropriate for in-operando neutron diffraction of Li-ion battery electrodes. 

 

Future work involves the characterization of the thermochromic properties of VO2 films, 

electrochemical properties of LiαVOx nanoparticles, and optimization of vanadia gel fabrication. 
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Figure 1. SEM image of native vanadia 

aerogels. 

Figure 2. Photo of vanadia gels. 

Figure 3. SEM image of VO2 film cross-section 

with inset photo on a 1'' diameter silica substrate. 
Figure 4. SEM image of LiαV6O13 nanoparticles. 

2 μm 
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Flame Synthesis of VOx and ZnO Nanoparticles 
 

Professor Yangchuan Xing 

 

Department of Chemical Engineering, MS&T 
 

 
1. Flame synthesis of vanadia (VOx) nanoparticles and their conversion to nanoporous VC 

 A counterflow diffusion flame (CDF) reactor was used to synthesize Vanadium oxide 

nanoparticles. It consists of two vertical channels of rectangular cross sections that are positioned 

opposite to each other. The flame established using the combustion gases produces a temperature 

gradient between the mouth of the burner and the flame. Particle morphology can be easily 

controlled using the CDF reactor because of the different chemical environment present on either 

sides of the flame. The important point that needs to be considered is that the flame should be 

nearly flat for producing nanoparticles of uniform size and shape. This flat flame can be obtained 

by using a honeycomb mesh on the rectangular cross sections. The schematic depicting the setup 

for a CDF reactor is shown in Fig. 1. 

 

 

 

 

Particle 

collector

Flame

PSP
To pump 

and filter

H2/N2 + DEZ

O2/N2

  

   

 

 

 

Flange

 

Fig. 1 Schematic showing of the 

CDF reactor for making metal oxide 
nanoparticles. 
 

Fig. 2 TEM image of the VOx 

nanoparticles from the CDF reactor. 

 
Fig. 3 XRD shows phases of the VOx 

nanoparticles from the CDF reactor. 

  

 The precursor used for the production of vanadium oxide nanoparticles was vanadium 

oxytripropoxide. The precursor was filled in a gas tight syringe and introduced using a syringe 

pump. The flow rate for the production of vanadium oxide nanoparticles was 2 ml/hr. It has be to 

noted that vapor pressure of vanadium oxytripropoxide ar room temperature is very low and 

hence, it has to be heated to around 70-75
o
C, where it has a vapor pressure of 20 Pa. Heating tape 

is wound across the line that carries the precursor and the gas line, and the heating tape was then 

connected to an auto transformer to control the rate of heating.  

Fig. 2 shows the STEM image of the vanadium oxide nanoparticles. It can be clearly seen 

that the particles are spherical in shape with an average size of approximately 50 nm. The 

morphology of the particles is spherical since they are produced in a flame and hence the smaller 

particles tend to get sintered to form a larger particle. The vanadium oxide particles produced 

were then used to synthesize vanadium carbide. The vanadium oxide powder obtained from the 

CDF was then analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM) 

in the STEM mode. Fig. 3 shows the XRD pattern of the VOx particles with two main phases of 

V2O5 and VO2.  

These nanoparticles were used as precursors to make nanoporous VC material. The metal 

oxides were weighed and added to appropriate proportions of tartaric acid and distilled water. The 

mixture was refluxed for 24 hrs. After the refluxing process is over, the mixture is then put on a 

hot plate for 15-20 mins at approximately 100
o
C to remove water. The resultant powder was then 

pyrolyzed at 1500
o
C for 24 hrs in a tubular furnace.  
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XRD analysis was done on the resultant products and the corresponding image is shown in 

Fig. 4. It shows the formation of VC and V8C7 as the products from pyrolysis. Hence, VC was 

successfully synthesized by using flame made vanadium oxide as the precursor. Images from the 

SEM analysis of the VC powder obtained from pyrolysis are shown in Fig. 5. From the images it 

can be clearly seen that the VC powder product obtained from high temperature pyrolysis has a 

very large particle size (~300 nm, inset) compared to the initial vanadium oxide particle size. This 

might be due to the effect of sintering of the powder during the pyrolysis process. Our aim is to 

synthesize VC powder using vanadium oxide powder as the precursor without any large change 

in the shape of the particles. This has been under further study.  

 

 Fig. 4 XRD pattern of the pyrolysis product obtained from 

refluxing tartaric acid and distilled water 

 
Fig. 5 SEM images of the porous VC 

nanoporous material. The inset shows a 
high magnification image. 

 

2. Flame synthesis of ZnO nanoparticles 

This work has been to make ZnO nanoparticles in the 

CDF reactor. ZnO nanoparticles showed a nanorod 

morphology (see Fig. 6). ZnO can be made into many 

nanostructures that have unique properties for advanced 

applications, such as piezoelectric and pyroelectric 

materials. ZnO nanorod is one of the nanostructures that 

possess advanced properties. We show the flame process 

can be used to continuously synthesize aerosols of ZnO 

nanorods in large quantities. Unlike previous work, our 

process shows that pure ZnO nanorods can be made in a 

freestanding form rather than growing on a substrate 

surface. It was found that the ZnO nanorods preferentially 

grow in the thermodynamically stable direction [001] in 

the gas phase with different aspect ratios, depending on flame process conditions. The ZnO 

nanorod aerosols are highly crystalline and have a hexagonal geometry. Raman and 

photoluminescence spectroscopic studies showed that there are no structural defects in the 

nanorods, which have energy band gap of 3.27 eV in the near UV region. A journal paper has 

been published on this work [1].  

 

3. References 

 

[1] Gandikota, V.; Xing, Y. “Flame Aerosol Synthesis of Freestanding ZnO Nanorods,” 

 Advances in Nanoparticles 2014, 3, 5-13.  

 
Fig. 6 TEM image of ZnO nanorods 

made in the CDF reactor. 
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Development and Self-Assembly of Multifunctional Inorganic-Polymer Hybrid 

Materials for Solar Energy Applications 

Professor Zhonghua Peng 

Department of Chemistry, University of Missouri- Kansas City 

1. Major Research Accomplishments 

The primary objectives of the original proposal are to develop various inorganic-polymer 

hybrid materials, study their self-assembly processes using innovative characterization techniques, 

and explore their potential applications as new multifunctional materials. During the three years 

under this grant support, we have made significant progress in a number of research fronts [1-20], 

which are summarized in the following sections. 

1.1 Mechanochemical approach to composition-tunable semiconducting 

nanoparticles 

We have demonstrated that a simple high energy ball milling technique can be used to 

prepare uncapped semiconducting 

nanocrystals in large scale and with 

convenient composition tuning. 

Ternary CdSe1-xSx [1], CdTe1-xSex 

[2], and Zn1-xCdxS nanocrystals as 

well as carbon nanodots [3] and C-

doped TiO2 nanocrystals have been 

successfully prepared.  The 

resulting nanocrystals have average 

sizes smaller than 9 nm (2-20 nm range with majority around 5 nm) and are chemically 

homogenous. Ternary CdTeSe nanocrystals are found to exhibit strong near IR (up to 1400 nm) 

absorption [2].  

1.2 Self-assembly of charged nanoparticles 

We have discovered that surface-charged nanoparticles (CdSe1-xSx/Na2S in aqueous or 

methanol solution [1], carboxylic acid-functionalized 

C-dots in water [3], and carboxylate-functionalized C-

doped TiO2 in water) self-assemble into uniformly 

sized single-shell hollow vesicles.  Such vesicles are 

being explored for biomedical and energy-related 

applications. 

 

1.3 C-dots for solar cell applications 

We have demonstrated for the first time that the aqueous soluble carbon nanoparticles 

(CNPs) can be utilized as an interfacial layer between TiO2-coated ZnO nanorod arrays and P3HT 

polymer, forming close and intimate 

contacts with both TiO2 through carboxylic 

acid binding and P3HT polymer presumably 

by way of π–π interaction [3]. As a result, 

the infiltration of P3HT into the space 

among nanorod arrays and the formation of 

top P3HT cover layer are both improved. 
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The resulting HSCs showed the highest photocurrent ever reported among ordered heterojunction 

HSCs based on ZnO nanorod arrays and P3HT. The VOC though is far from satisfactory. Using 

CNPs with narrower size distribution may hold the promise of overcoming this hurdle. While that 

remains to be seen, the concept of using aqueous soluble CNPs as an interfacial layer to improve 

the device performance of HSCs is clearly validated. 

 

1.4 Hybrid diblock copolymers containing coordinatively binded CdSe 

nanoparticles 

 

Hybrid rod-coil diblock copolymers containing coordinatively binded CdSe nanoparticles 

have been synthesized. Albeit their low 

CdSe nanoparticle loading of less than 

50% and the short rod block length, 

simple single-layer solar cells fabricated 

from the hybrid copolymers showed  

significantly improved performance over 

their corresponding diblock copolymers 

without CdSe attachment [4]. 

 

1.5 Hybrid diblock copolymers containing polyoxometalates (POMs) 

A major research focus of this ARO-funded effort is directed towards the synthesis of 

POM-containing diblock copolymers (DCPs).  Both coil-coil and rod-coil hybrid diblock 

copolymers have been synthesized. A rod-coil diblock copolymer with POM attached to the coil 

block can be considered a donor-acceptor diblock copolymer.  Thus, our motivation to such 

hybrid rod-coil 

diblock 

copolymers is 

twofold: to 

study their 

complex phase 

behavior, 

identify and 

ultimately 

control the hierarchical orders, and to explore such hybrids as novel functional materials, for 

example photovoltaic materials. We have successfully synthesized two series of POM-containing 

rod-coil diblock copolymers, one based on the PPV rod block (PS-Mo6-PPV) and the other on the 

poly(3-hexylthiophene) rod block (PS-Mo6-PT) [5].   

 The structures of all hybrid DCPs have been 

thoroughly characterizations using 
1
H NMR, FTIR, 

GPC, and MALDI-TOF measurements.  Their thermal 

(DSC/TGA), optical (UV/Vis and FL emission), and 

electrochemical (CV) properties have also been 

carefully studied.    

To study the morphology of the spin-coated or 

drop-cast films, a multi-functional scanning probe 

microscopy which generates simultaneously the 

topographical and the charge impedance images has 

been set up.  A network analyzer (Rhode & Schwarz 
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ZVB4) was purchased using the ARO support. By integrating this instrument into our currently 

existing atomic force microscopes, we are able to perform simultaneous surface morphology and 

charge impedance imaging with nanometer resolution from DC to microwave frequency range.  

Also integrated to the instrument is a light source (a laser is currently under consideration to be 

added to the system) so that photoconductive scanning probe microscopy imaging can be 

performed. 

Current-sensing AFM studies show that the spin-coated films of the PS-PPV film show 

no conducting domains at all.  After cluster attachment, only some minor conducting areas are 

noticed.  These results indicate that both PS-PPV and PS-Mo6-PPV films exhibit negligible phase 

separation.    PS-PT DCPs and PS-Mo6-PT DCPs, however, show very clear conducting domains.  

The film morphology is found to be sensitive to the size of the PT block and also depends on the 

solvent.  Solar cells with the configuration of ITO/PEDOT:PSS/HDCP/Ca/Al have been 

fabricated [6].  A one-order of magnitude higer efficiency (0.010%) was observed from the 

annealed photovoltaic device in comparison to that (0.001%) of the unannealed device. While 

good open circuit voltage (1.25 V) is observed for the pristine film, the short circuit photocurrent 

is dismally low. Annealing improves the photocurrent by one order of magnitude and also the fill 

factor, presumably due to the formation of desired phase-separated domains.  The overall 

photocurrent is however still very low, likely due to the poor photoinduced charge transfer from 

the PT backbone to the POM cluster. 

  

 1.6 Solution self-assembly of POM-polymer hybrids 

 

The solvent dependence of film morphology prompted us to study the aggregation 

behavior of hybrid polymers in solutions.   Our studies on a POM-containing conjugated polymer 

show that the hybrid polymer behaves very differently in different solvents [7].  In a non-polar 

solvent such as toluene, the counter ion (tetrabutyl ammonium) is closely associated with the 

POM cluster anion.  With the conjugated 

polymer backbone solvaphilic while the 

POM clusters solvaphobic, the hybrid DCP 

self-assembles into hollow spheres or 

vesicles.  In a polar solvent such as acetone 

or DMSO, the counter ions are dissociated 

from the cluster anion, making the hybrid 

polymer polyelectrolyte-like, which self-

assemble into tubes.   

 

The solution self-assembly 

behavior of the three PS-Mo6-PT hybrid 

diblock copolymers has also been studied. 

In NMP, the three hybrid diblock 

copolymers tend to aggregate to form 

vesicles with the PS-Mo6-PT3 having the 

largest size. This is expected due to its 

significantly longer non-polar PT block 

length than those of PS-Mo6-PT1 and PS-

Mo6-PT2. The polar coil block is exposed 

to the polar solvent while the non-polar 

PT block forms the inner layer. When 

toluene, a non-polar solvent, is added, the 

interaction between the PS-Mo6 polar 

head groups is weakened, since the polar 
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PS-Mo6 block does not like the non-polar solvent, leading to smaller vesicles. When the toluene 

fraction reaches a certain value, the overall solvent quality becomes non-polar, the bilayer 

vesicular structures switch positions with the PT block now facing the solvent while the cluster 

block staying inside and away from the solvent, forming reversed vesicles.      

 

1.7 Organically functionalized nanoparticles  

In addition to hybrids based on POM-containing and CdSe nanoparticle-containing 

diblock copolymers, other types of polymer hybrids have also been explored.  One is core-shell 

nanoparticles where polymer shell grows out of a variety of 

nanoparticle cores through environmentally friendly enzymatic 

polymerization.  In addition to being “greener,” the enzymatic 

polymerization also allows the synthesis of some polymers 

which are otherwise inaccessible through chemical means, e.g. 

poly(phenols). Gold nanoparticles (Au NPs) and silica nanoparticles have been successfully 

functionalized with alkyl chains bearing terminal azido groups.  The azido end is available for 

further modification and functionalization using “click” reaction with ethynyl-functionalized 

small molecules, polymer chains, and POMs.  We have been able to achieve ca.50 % “click” 

efficiency in the preliminary studies.  The unprecedented POM functionalized NPs are interesting 

materials for catalysis and molecular electronics.  

 1.8  Other unique conjugated systems  

 While it has been demonstrated, in quite a few systems, that donor-acceptor diblock 

copolymers show better photovoltaic efficiencies than their corresponding donor/acceptor blends, 

all donor-acceptor diblock copolymers reported so far still show disappointing device 

performance.  This is probably a result of low charge carrier mobility intrinsic to many organic 

conjugated systems.  While having closely packed POMs will likely make the electron transport 

facile, hole transport through the aggregated conjugated polymer segment may need further 

improvement.  Thus, efforts have been devoted towards the synthesis of new conjugated systems 

with high charge mobilities.     

1) New soluble polycyclic aromatic hydrocarbon molecules as electron donors:  we 

have synthesized a series of electron donor molecules (D1-D4) that share the same π-conjugation 

core, but modified with different side groups [8]. Perylenediimde fibers coated with such donor 

molecules showed dramatically different photocurrent response [9].  It was found that the 

nanofibers coated with homogeneously and molecularly distributed donor molecules (such as D4) 

exhibit the highest photo-current, whereas those coated with segregated donor aggregates (such as 

D1-D3) show 

much lower 

photocurrent 

under the same 

illumination 

conditions. The 

aggregation of 

donor molecules 

on the surface of 

the fibers may 

lead to the buildup of local electrical field which hinders the charge separation of the 

photogenerated electron-hole pairs. The different morphologies of molecular aggregates were 

mostly the result of side group modification of the donor molecules. Such structural effect was 

more clearly manifested by investigating the structure and morphology change of the drop-cast 

films upon solvent vapor annealing.  
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2) New donor-acceptor conjugated polymers.  Four donor-acceptor alternating 

conjugated copolymers based on a new imide-functionalized 

naphtho[1,2-b:3,4-d′]dithiophene monomer and 2,2’-

bithiophene comonomers have been synthesized and 

characterized [10]. Varying the substituents at the 3,3’ 

positions of the comonomer unit has a profound effect on the 

conformational twist of the backbone, and consequently the 

optical, redox and photovoltaic properties of the copolymers. 

Bulk heterojunction solar cells of these copolymers blended 

with [6,6]-phenyl-C71-butyric acid methyl ester show power 

conversion efficiencies up to 2.45%.   

 

  

3) Dendritic donor-acceptor systems.  We have previously shown that triphenylene-based 

conjugated unsymmetrical dendrons (TPA dendrons) are promising light-harvesting   systems [11].  

To confirm that they are also excellent electron donors in a photoinduced electron transfer system, 

the TPA dendrons were covalently linked to the bay positions of 

a perylenebisimide (PBI) core [12,13].  While both the TPA 

donor G1 and the PBI core (POB) are highly fluorescent 

separately, the covalently jointed system (POG1 & PTG1) 

exhibit very weak fluorescence.  In other words, both the donor 

emission and the acceptor emission are nearly completely 

quenched.  The fluorescence quenching is thought to be due to 

the photoinduced electron transfer from the TPA donor to the 

PBI acceptor, which is confirmed by their frontier orbital levels 

obtained by cyclic voltammetry. 

 

4) Highly twisted polycyclic aromatic hydrocarbons:  One interesting organic system is the 

highly twisted polycyclic aromatic hydrocarbons (PAHs). While PAH and acenes have been 

studied extensively for their optical properties, we have 

developed  a synthetic procedure to synthesize a 

series of acene that are highly twisted (some are chiral 

and helical) and linear ribbons.  Using this approach, 

we are able to systematically investigate the 

effect of the twist, end units, substituents, and length of the 

ribbon on their corresponding spectral 

properties.  The overall study will help to further 

understand these effects, which would result in 

improved optoelectronic material. To date, 

approximately 10 acenes have been characterized with 

end-to-end twists greater than 60°.  Of those 10, only two possess an end-to-end twist greater than 

100° (one shown as 3 in list 1). We have successfully synthesized hexacene derivative 4.  X-ray 

analysis indicates that 4 possesses the largest twist ever reported of 176.5°.  We are currently 

synthesizing the corresponding heptacene 5 and the derivatives of 4 and 5 with different capping 

groups.   

 

5) High hole mobility of solution processed thin films of a polycyclic thiophene-

based s mall molecules. We synthesized a new soluble thiophene-containing polycyclic 

compound and discovered that spin-coated thin films of this compound exhibit high space-charge 

limited current (SCLC) hole mobility up to 8.72 × 10
−2

 cm
2
 V

−1
 s

−1
 [14]. This value is amongst 
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the highest reported hole mobilities obtained by either filed-effect transistor or SCLC method for 

solution-processed small-molecule organic semiconductors. 

 

 

 

 

 

 

 

 

1.9 Free volumes and multi-layer structures in nano-scale films and 

nanocomposites studied by positron annihilation spectroscopy (PAS)  

(1). Upgrading slow positron beam at UMKC. With the ARO support, we are able to 

upgrade our existing slow positron beam including the new two dimensional (2D) extension 

system and data acquisition system electronics for the variable mono-energy slow positron beam 

at UMKC.  The improvements include 1) Using 2D coincident technique to obtain a much better 

energy resolution with improved 2 orders of magnitude in  background reduction, 2) Extending 

the beam to a location with better sample manipulation, and 3) Installing a new 2D-data 

acquisition system which will be able to collect data in a better efficiency. 

(2) Free volumes in ZnO-polyurethane nanocomposites. The free-volume properties in a 

system of zinc oxide (ZnO) nanoparticles (20 nm) dispersed in waterborne polyurethane (WBPU) 

were measured using positron annihilation lifetime spectroscopy [15]. Two glass-transition 

temperatures (Tg),  lower Tg ~ 220 K and higher Tg ~ 380 K of the ZnO/WBPU nanocomposites, 

were found and both increase with increasing zinc oxide content from 0 % to 5 %. These two 

glass transitions are interpreted from two segmental domains of WBPU; the lower Tg is due to 

soft aliphatic chains and high Tg is due to polar hard microdomains, respectively. The increase in 

Tg with the addition of ZnO fillers is mainly attributed  to interfacial interactions through 

hydrogen bonding, van der Walls forces, and electrostatic forces between the polymer matrix and 

zinc oxide nanoparticles. These results are supported by the data from the dynamic mechanical 

thermal analysis (DMTA). The relationship between the free volume obtained from nanoscopic 

positron method and the physical crosslink density from macroscopic DMTA method as a result 

of microphase separation of hard and soft segments in polyurethane is found to follow an 

exponential function. Chemical properties and surface morphology of nano-composites were 

examined by Fourier transform infrared spectroscopy (FTIR) and by atomic force microscopy 

(AFM). 

(3) Glass transition in SWCNT/PS nanocomposites. Positron annihilation spectroscopy 

was employed to study the free volume properties at three levels of interfacial interaction between 

Polystyrene and carbon nanoparticles, polystyrene grafted oxidized single wall carbon nanotubes 

(SWCNT) composites (PS/g-SWCNT-COOH), Polystyrene oxidized Single wall carbon 

nanotubes (PS/SWCNT-COOH) and polystyrene carbon nanofiber composites (PS/CNF) which 

represent covalent bonding, hydrogen bonding and Van der Waal’s interaction [16-18]. Results of 

temperature dependence of orthopositronium lifetimes for the three composites show that 

covalent PS/g-SWCNT-COOH has the highest Tg with changing concentration of SWCNT-

COOH in PS matrix in comparison with PS/SWCNT-COOH and PS/CNF, which indicates a 

correlation between the strength of interfacial interaction and the glass transition temperature. 

The results are supported by the results from DSC and FTIR data. This is in collaboration with 

Prof. W. Ford of Oklahoma State University. 
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Development and Study of Amine Sensors Based on Metal Nanoparticle-Doped 

Polyaniline 

 

Professor Frank D. Blum 

 

Department of Chemistry, Oklahoma State University 

 
Our group has demonstrated how a new synthesis technique, developed in our labs can be used to 

make gas sensors that are significantly more sensitive than those made in more conventional ways.  

We have developed a photo-assisted technique producing, in a single step, PANI nanofibers on 

planar substrates [1].  This simple technique uses aniline, water, an acid dopant, an oxidant such 

as ammonium persulfate, and a metal ion.  Initially, we discovered that the materials without the 

metal could be made into polyaniline nanofibers using gamma-radiation from a nuclear reactor 

after shutdown [2].  We also discovered that with the addition of certain metal ions to the solution, 

nanometal particles, embedded in conducting polymer nanofibers resulted [3].  These materials 

could be photopolymerized with UV radiation, making them suitable for lithographic applications 

[1].  

An interdigitated array of electrodes made from PANI 

nanofibers is shown in Figure 1 [4].  This type of array 

was used as the sensor for vapors.  A drop of precursor 

solution was placed on it, followed by irradiation with UV 

light.  A micrograph of the resulting material on the 

surface is shown in Figure 2.  The conducting nanofibers 

(or mesh) of polyaniline are apparent in the figure [5].   

The response of the PANI-nanometal composite 

sensors to triethylamine vapor in nitrogen gas showed that 

bulk PANI was the least sensitive and slowest to respond.  

Improvements in sensitivity and response rates were found 

with PANI nanofibers.  Additional improvement was 

found with the incorporation of nanometal particles, with 

Ag particles being the most sensitive.  The response to the 

triethylamine was fit to an exponential function or:  

Inorm(t) = (1 - I∞) exp(-t/τ) + I∞ (1) 

where the I's represent the currents at various 

times, t, and is the time constant for the signal 

reduction. PANI nanofiber-Ag sensors were 20 

times more sensitive and 4 times faster than bulk 

PANI sensors.  The reason for the enhanced 

sensitivity was revealed by Raman spectroscopy, 

which showed that there was a charge transfer 

from the PANI to the Ag particle when dopant 

(acid) was present.  This charge transfer was 

diminished in the presence of the triethylamine.  It 

therefore appears, that the Ag particles act similar 

to a dopant, giving rise to the enhanced response.  

The behavior of these sensors was modeled 

based on a surface adsorption and Langmuir 

adsorption model [6].  For surface adsorption, a 

Fig. 1.  Arrays used for PANI 

sensors.  The dot was a drop of 
precursor solution after UV 
exposure and drying.  The 
expanded picture on the right 
shows the detail of a bare array 
element.   

Fig. 2.  PANI nanofibers (mesh) after 

irradiation of the precursor solution [5].  
The scale bar in "d" is for 100 nm. 
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dual sorption model and adequately fit the data.  Each model gave different and useful insight 

into the physics of the systems [6].  The dual sorption model suggested the presence of diffusive 

and non-diffusive holes.  The diffusion model, was consistent with the notion that the diffusion of 

the de-dopant to the dopant controlled the response rate.   

Because of their low cost, environmentally friendly synthesis, and ease of preparation, we 

believe that these materials have significant potential for a variety of applications.  However, 

there are still a number of things that need to be understood before these materials can reach this 

potential.  

The behavior of adsorbed surfactant cetyltrimethylammonium bromide (CTAB) on silica was 

studied by temperature-modulated differential scanning calorimetry (TMSDC), 

thermogravimetric analysis (TGA), Fourier 

transform infrared spectroscopy (FTIR) and 

powder X-ray diffraction.  The results were 

interpreted with a layered model [7].  CTAB 

association structures were found for the 

adsorption of surfactant on the silica surface 

namely: a monolayer, a second layer that 

completed a bilayer, and multilayer 

structures. The silica surface was found to 

lower both the melting and crystallization 

temperatures of the CTAB tails. The 

enthalpy and entropy changes for CTAB 

during the melting and crystallization 

indicate that the CTAB molecules 

underwent significant structural changes, 

from surface to bulk-like structures.  The 

first layer of CTAB on silica was rather 

disordered, followed by a more ordered 

bilayer, followed by layers that approach 

bulk-like (well ordered) behavior.  This understanding helped us understand the behavior of 

polymers made in the room temperature polymerization of emulsion gels.  A schematic structure 

of the CTAB near the surface is shown in Figure 3.    
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Fig. 3. Schematic structure of adsorbed CTAB on 

silica showing an increased organization as the 
distance from the surface increases. The layout for 
the CTAB molecules was based on consideration 
of a monoclinic lattice of CTAB crystals. 
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Regioselective Cross-Linking of Silica Aerogels with Magnesium Silicate Ceramics 
 

 

Professor Massimo Bertino 

 

Department of Physics, Virginia Commonwealth University (VCU) 
 

 

The VCU team developed a fabrication method, which allows one to mechanically reinforce 

aerogels without compromising their porosity since the core retains the characteristics of native 

aerogels [1]. The reinforcement is ceramic in nature (mainly magnesium silicate) and it is stable 

at temperatures comparable to the densification temperature of silica aerogels (~900 
o
C), which 

are much higher than the temperatures (~200 
o
C) accessible to polymer-reinforced aerogels. 

Cross-linking depends on the presence of carbon in the aerogel structure. We obtained cross-

linking only when carbonization conditions had been fulfilled, that is, PAN was used as a 

crosslinker, oxidized at 225 
o
C in air and then heated to the carbonization temperature of 850 

o
C. 

Masking allows one to reinforce only selected parts of aerogels and it could be employed to 

integrate aerogels into mechanical assemblies by reinforcing only the regions most subject to 

mechanical stress. Our results may also allow development of non-aerogel ceramic materials with 

anisotropic physical and chemical composition. In our process, chemical and physical properties 

are altered within the same monolith by introducing a catalyst (carbon in our case) for a solid-

state reaction using conventional lithographic methods. The flexibility of lithography allows in 

principle to generate complicated patterns, which are not accessible to conventional methods of 

fabrication of anisotropic ceramics such as layering, bonding and generation of temperature 

and/or chemical gradients during processing. 
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Fig. 1. Digital camera images of: (a) a native silica aerogel processed at 850 
o
C without Mg, (b) 

a X-PAN aerogel processed at 850 
o
C without Mg, (c) a Mg-native aerogel, (d) a Mg-PAN 

aerogel processed at 650 
o
C; (e and f) a Mg-PAN aerogel processed at 850 

o
C. 


